	Q.P. Code: 20CS0504	R20		
	Reg. No:			
	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY::	PUTTUI	2	
	(AUTONOMOUS)		-	
	B.Tech II Year I Semester Regular & Supplementary Examinations I	March-2	023	
	COMPUTER ORGANIZATION & ARCHITECTURE			
	(Common to CSE,CSM,CIC,CAD,CCC & CSIT)	Mare N	, , ,	CO
	Time: 3 nours $(A = 1) = (A = 1) = (A = 1)$	Max. IV	larks: (50
	(Answer all Five Units 5 x 12 = 60 Marks) UNIT-I			
1	a Describe the Basic Operational Concepts of computer with neat diagram.	CO1	L2	8 M
	b What are the Purpose of PC, IR and General-Purpose Registers? OR	CO1	L1	4M
2	a Identify and explain various Phases of instruction cycle.	CO1	L3	10M
	b List the Classification of Computer Instructions.	CO2	L2	2M
	UNIT-II			
3	Illustrate the steps in Booth multiplication flow chart. Show the step by step	CO3	L6	12M
	signed multiplication of (-7) and (-11) using Booth algorithm.			
4	OR Discuss the Multiplication electricher with Shift and a date of a with with he	CO2	10	1014
4	flowchart Multiply the binary numbers (01011) and (01101) Using Shift and	603	LO	I ZIVI
	add method.			
	UNIT-III			
5	a Discuss the any four Arithmetic Micro Operations.	CO3	L3	6M
	b Draw and explain four bit parallel adder circuit.	CO3	L2	6M
	OR			
6	a Describe the Micro Programmed Control with a neat sketch.	CO6	L2	6M
	b What is micro programmed control? List the advantages.	CO6	L2	6M
	UNIT-IV			
7	a Compare various types of Auxiliary memories.	CO2	L2	6M
	b Define track and sector. Analyze the importance of auxiliary memory.	CO3	L3	6M
•	OR CLAIR DOMAIN	000		016
8	a Classify the ROM memories.	CO3	L3	2M
	b Explain different ROM memories.	CO4	LZ	IUM
0	UNII-V	COL	10	43.5
9	a what are the sub-operations performed in arithmetic pipelining?	CO5		4M
	Calculate the delay time in an equivalent non-pipeline floating point adder	CO5	13 T2	2M
	subtractor when $t1=60$ ns $t2=70$ ns $t3=100$ ns $t4=80$ ns $tr=10$ ns	005	го	Z1VI
	OR			
10	a Define interconnection network, bandwidth and effective throughput.	CO6	L2	6M
	b Explain the bus in interconnection network.	CO6	L2	6M

*** END ***

	O.B. C. MCC. M. C. M.	
	COMPUTER ORGANIZATION & ARCHITECTURE	
	A Describe the Miles Property Leaders with a such stance	
	is Starch the llowebart for Bonney pure matriplication in utilizing s pipeline.	
	e Calculate the delay time in an equivalent non-physine from he prosts adder	